Global biomass production potentials exceed expected future demand without the need for cropland expansion
نویسندگان
چکیده
Global biomass demand is expected to roughly double between 2005 and 2050. Current studies suggest that agricultural intensification through optimally managed crops on today's cropland alone is insufficient to satisfy future demand. In practice though, improving crop growth management through better technology and knowledge almost inevitably goes along with (1) improving farm management with increased cropping intensity and more annual harvests where feasible and (2) an economically more efficient spatial allocation of crops which maximizes farmers' profit. By explicitly considering these two factors we show that, without expansion of cropland, today's global biomass potentials substantially exceed previous estimates and even 2050s' demands. We attribute 39% increase in estimated global production potentials to increasing cropping intensities and 30% to the spatial reallocation of crops to their profit-maximizing locations. The additional potentials would make cropland expansion redundant. Their geographic distribution points at possible hotspots for future intensification.
منابع مشابه
Food supply and bioenergy production within the global cropland planetary boundary
Supplying food for the anticipated global population of over 9 billion in 2050 under changing climate conditions is one of the major challenges of the 21st century. Agricultural expansion and intensification contributes to global environmental change and risks the long-term sustainability of the planet. It has been proposed that no more than 15% of the global ice-free land surface should be con...
متن کاملGlobal bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields
There is a growing recognition that the interrelations between agriculture, food, bioenergy, and climate change have to be better understood in order to derive more realistic estimates of future bioenergy potentials. This article estimates global bioenergy potentials in the year 2050, following a "food first" approach. It presents integrated food, livestock, agriculture, and bioenergy scenarios...
متن کاملThe Nexus Land-Use model, an approach articulating biophysical potentials and economic dynamics to model competition for land-use
Interactions between food demand, biomass energy and forest preservation are driving both food prices and land-use changes. This study presents a new model called Nexus Land-Use which describes these interactions through a representation of agricultural intensification. The model combine biophysics and economics to calculate crop yields, food prices, and resulting pasture and cropland areas wit...
متن کاملFuture urban land expansion and implications for global croplands.
Urban expansion often occurs on croplands. However, there is little scientific understanding of how global patterns of future urban expansion will affect the world's cultivated areas. Here, we combine spatially explicit projections of urban expansion with datasets on global croplands and crop yields. Our results show that urban expansion will result in a 1.8-2.4% loss of global croplands by 203...
متن کاملGISELA ¬タモ GIS-based evaluation of land use and agriculture market analysis under global warming
One of the important future issues is how agriculture production can meet the future demand increase due to the population and the income growth. Global warming would give both positive and negative impacts on them. Agriculture is often expected to supply biofuels to meet the growing transportation energy demand and the warming control policy. GISELA – GIS-based evaluation for land use and agri...
متن کامل